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ABSTRACT 
 

We are witnessing an astonishing growth in 
technologies related to the expansion of beam former 
hardware to higher frequencies, larger apertures, and wider 
fractional bandwidths. At the same time we are seeing, as a 
result of MEMS and nanotechnology, the development of 
optical systems that are looking curiously like phased arrays. 
In this paper we explore the similarities between optics and 
antenna design as employed in radar systems. We will see that 
many principles of optics can be viewed using beam-forming 
concepts familiar to radar engineers.  We will discuss Fresnel 
lenses, subspace, and near field beam formers.  

 
1.  INTRODUCTION 

 
           Beam-forming as applied in radar and comm.-

unications, and physical optics as applied to optical telescopes, 
seem on the surface to have little in common other than the 
obvious fact they both involve electromagnetic waves. We are 
here going to show that this disparity is illusory and that 
significant insights, perhaps even new systems, can emerge 
from considerations of their commonality1. To begin consider 
a simple prism, as shown in figure 1, and contrasted with a 
phased array antenna. Note that the bending of light in the 
prism, usually referred to as Snell’s law, is usually “blamed” 
on dielectric coefficients and continuity requirement of 
electric fields as mandated by Maxwell’s equations [3].  This 
approach tends to not foster insight for radar signal processing 
engineers who are much more comfortable with steering 
vectors than PDEs. At the level of the diffraction limit, that is 
when we consider optical systems from a wave front 
perspective, we can treat the prism as a time delay beam 
former array whereby the delay is given by the variable length 
as the light passes through the glass. Hence one can view a 
prism simple as a tapped delay line at optical carrier 
frequencies!2  This is of some interest, and has been reported 
implicitly in [1], but a more complex example may be worth 
considering.  

                                                 
1  This work was the outgrowth of technical conversations and does 

not reflect findings of a formal funded program. 
2 The dielectric variation complicates this for white light. 

To this end in section 2 we will discuss Fresnel 
lenses, and show that they are a mixture of coherent and 
incoherent beam forming. In section 3 we draw similarities to 
subspace based energy detection [2]. We will also show that 
one can view grating lobes arising from phase only beam 
forming as similar to the diffraction pattern one obtains from 
the wavelength-modulus lens “scraping” that lies at the core of 
Fresnel design. 

 
2 FRESNEL LENSES AS BEAMFORMERS 

 
The Fresnel lens was invented in 1822, by the French 

physicist Joseph Fresnel [3]. Fresnel made the fundamental 
observation that at a fixed wavelength the gain of a lens (at 
broadside) is unaffected if the steering vector phase is limited 
to the principal range [-π,π]. Thus if we replace a rounded lens 
by scraping off glass every time the phase viewed by a signal 
impinging at broadside extends beyond the principal range we 
still get full gain. The advantage is that the lens is now must 
flatter and lighter. The disadvantage is that the lens is very 
hard to make! In fact with rare exception [5]. Fresnel lenses do 
not  create full gain but rather revert to a constant phase 
stepwise approximation. Also, note that  linear-phase only 
shifting is not sufficient in the near field. Before discussing the 
commonality of lenses and subspace beam-formers we will 
consider Fresnel lenses in isolation. 

It is definitional that focusing within the near field 
requires more than a wave of linear phase shifts [3].  In this 
regime then, unless a large number of phase elements are 
used, a fair amount of phase tilt (quadratic phase) will fall 
across elements towards the edges, and unless tilts can be 
applied, the average phase error will be large, and 
performance will be poor. (Very near field requires amplitude 
taper as well, but this onset is rare in practice.) 

As an example, let’s consider a one dimensional case 
where 2 waves of curvature are used across the whole aperture 
which is subdivided into 9 equal sub apertures, or Fresnel 
“teeth”.  First to be addressed is the case of piston only phase 
control (corresponding to stair-wise  as opposed to linear saw-
tooth Fresnel sub-apertures).  Figure 3 shows the desired 
quadratic vs. the realized phase profile 

In Fig. 4 the piston-phase-shift-only realization of the 
desired wave front is shown to produce a spot (beam) pattern 
that is noticeablely weaker, slightly broader, and with distinct 
side lobes.  The peak has fallen to about 65% of its original 
value, and the intensity would be down to the square of this or 
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about 42%.  This is as expected, since the peak intensity, or 
Strehl Ratio, is know to fall as exp(-ε2), where ε2 is the mean 
square phase error, at least for small phase errors [3].  In this 
case the mean square phase error was 0.89 radians, or 0.23 
wave and the predicted Strehl Ration is then 41%. Purely 
random phase aligment would drop the peak down to 33%, so 
we see that the piston approximation straddles perfection and 
chaos. 
 In the case where tilts as well as pistons can be 
applied to each sub aperture the resulting phase pattern can be 
piecewise linear.  Not surprisingly, the phase errors are greatly 
reduced and the focused spot is greatly improved, virtually 
matching the black line in figure 4.  One can show  that the 
(small)  phase errors are identical in each sub aperture in this 
case, whereas in the constant phase segment case the errors 
grow worse away from the center of the aperture.  This really 
should be no surprise, since the example is one of constant 
curvature, and this constant curvature is the only part of the 
phase which a piecewise linear model cannot match within a 
sub aperture.  Generally capturing the tilt suffices and higher 
order phase terms can be discarded on each Fresnel sub-
aperture. 
 

2-D FRESNEL PATTERNS 
 

Consider a Fresnel lens as a sequence of concentric 
circles of prisms.  Each ring puts the correct tilt on a ring of 
light to point it at the focus.  This view ignores the tiny 
curvature presumably across each groove, but we will soon 
see this doesn’t matter much for the example to considered.  If 
the rings were to be spaced so each ring has a modulo-2π 
phase relationship with every other one, this lens would put 
the correct phase and tilt on each sub-aperture beamlet.  
Fresnel lenses commonly encountered on projectors and as 
magnifiers don’t even attempt to get the modulo-2π phase 
relationships correct.  This is in part because it would be 
difficult, but it is also because such an approach wouldn’t 
work in (wavelength variant) white light.  We will call such a 
lens an asynchronous Fresnel lens. So now we see a third way 
to look at phases and tilts as discussed above.  What good does 
it do to put the correct tilts on the wave front, if the relative 
phases are essentially scrambled?  Each ring of such a Fresnel 
lens works independently from all the others, and the 
wavelength of light is so short that this provides adequate 
performance for many applications. 

Consider a typical Fresnel lens as used in an 
overhead projector as a concentrator.  It’s about a foot on a 
side with a one foot focal length and 2 grooves per millimeter.  
Then, for example, in a 2f to 2f imaging system where the 
magnification is unity, the diffraction limit will make the 
effective resolution about R* λ /d = 0.6m*0.5µm/0.5mm = 0.6 
mm.  Looking through such a lens, it is apparent that other 
distortions are far more important than diffraction in 
degrading the image quality.  Across a 1 foot lens, there would 
be 600 grooves so spaced, and thus the lens would perform 
about 600 times worse than a diffraction limited lens (coherent 
vice incoherent gain).  Effects due to the presence or absence 
of curvature, or focusing power, on each individual groove are 
also of this magnitude, since no focusing never adds more than 

the source diameter to a beam’s width, and perfect focusing 
brings the spot size to the diffraction limit.  Despite all this, 
for an optical wavelength of about 0.5 µm, 1000 waves fit 
across a 0.5 mm groove width, and the diffraction limit in 
angle space is thus 10 times finer than it is for the 1 foot W 
band antenna discussed in figure 2. 
 A “perfect” Fresnel lens which did match phases 
from groove to groove modulo-2π would be a challenge to 
construct, but modern MEMS manufacturing appears to be 
poised to enable this, at least in principal [4].  From the center 
to the edge of a 1 foot lens, there is a 1.5” difference in path 
length to a focus 1 foot away.  This amounts to 70,000 waves 
of difference, and the perfect lens would need this many 
zones.  The first zone would be more than 1 mm in diameter, 
and the last groove would be barely 1µm wide.  The fractional 
optical bandwidth of such a lens is about the inverse of the 
number of zones, so such a lens would work well across less 
than 0.1 Angstrom of optical bandwidth. 
 It is hopeless to discuss phase error for the 
“imperfect” or common Fresnel lens.  The average phase error 
would be on the order of magnitude of the number of zones of 
the “perfect” lens.  With 70,000 waves of error, the 
performance of each ring is easily seen to be better than what 
might guessed for such a huge error, randomly distributed. In 
an asynchronous Fresnel lens,  each groove has the right tilt 
and focus, but the phase jumps between rings is uncontrolled.  
There is a duality here, as the “imperfect” Fresnel lens phase 
error profile is conversely the phase profile of Fig. 3.  This 
duality carries over to the Fourier domain, where the far-field 
of the “imperfect” Fresnel lens looks like the focused spot of 
the constant phase segment approximation to a quadratic 
phase profile. 
 It is interesting to reflect that in optics aperture is 
generally not a limiting factor, rather cost and lens precision 
is. This may explain why, unlike in radar, few optical 
designers “care” about reduced gain due to some incoherence. 

 
NEAR FIELD FOCUSING AND FAR-FIELD PHASE 

 
 As a wave front is focused more strongly, the pattern 
at focus becomes smaller and smaller, but it doesn’t change in 
shape or phase.  For the case of a one dimensional square 
aperture, this pattern is shown in Fig. 4.  However, the shape 
and phase of the far-field pattern does change.  Figs. 5-6 show 
how the amplitude and phase in the far field evolve as the 
focus is drawn deeper into the near field.  Amplitude is show 
as height, while the phase at each point is shown as color as 
given by the color wheel inset.  As the pattern is focused more 
tightly into the near-field, the far-field phase is seen to unwrap 
some as the pattern spreads out.  
 

3. BEAMFORMER AND SUBSPACE DETECTION 
 
 RF analogies come in two flavors: 
(I) phase shift beamforming. Note that the Fresnel lens by 
nature has to be tailored to a particular wavelength. Thus all 
the artifacts of phase shift approximations arises as in radar, 
ambiguity lobes, gain loss off wavelength etc. 
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(II) Incoherently combined sub apertures. Note that in each 
piston or tilt the Fresnel lens is coherent. As we combine these 
sub apertures in an asynchronous Fresnel lens we loose 
coherency gain. This is akin to subspace processing, whereby 
one merely computes (whitened) energy in the absence of 
subspace steering vector [2] as we shall now see. This relation  
is best made more precise through equations. Let us take a 
slice through a circularly symmetric Fresnel lens made of 
linear tilt rings. Assume each ring has a width of N 
wavelengths. We can then express the pattern induced by the 
ring, as a function of azimuth, and wavelength, as: 
 
b j N N( ) exp( ) sin( ) / sin( ), sin( ) /ϕ πϕ ϕ ϕ ϕ π θ= = 2          (1) 
 
Where we have chosen coordinates so that the beam points at 
the azimuthal origin. Now suppose we have a perfect phasing 
from ring to ring. Then the composite pattern in the slice is 
given by a summation of the M beams (we assume far field 
focus): 

( )
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Where ϕ ϕi i= for a perfectly phase coherent synchronous 
Fresnel lens. In that case it is clear that the array gain in 
energy is (NM)^2. Now let us explore what happens when the 
phase is not perfect. Let’s take the worst case scenario, where 
the phase is uniform, that is ϕ π πi d uniform= −[ , ]  and the d 
subscript indicates equality in distribution. Hence: 
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In contrast to (2) we see that the energy growth has 
been reduced by M which is the classic incoherent vs coherent 
gain comparison. Note that equation (2) has the form of a 
beam space combiner whereby each of the sinc function 
beams is combined using a beam combiner ( )η ϕi  [2]. A well 
known technique in detection with unknown signal parameters 
is to compute the energy after projecting into a signal 
subspace [2]. Let v be the MN dimensional column vector 
which describes the steering vector of a wave front across a 
Fresnel lens comprised of M rings, each ring being N half 
wavelengths wide. [Whether the rings are contiguous or not is 
irrelevant in our discussion]. Let β be the Kronecker of sinc 
functions reflecting the lens kernel. Then we can express the 
output of the lens at a focal point using Kronecker products as                                      
 
 
 
 
 
 The coherent case corresponds to a single dimensional 
subspace (matched filter). The coherent case involves a 

random phase mixture, which by the linear distribution 
invariance of the normal distribution (which derives from the 
central limit theorem) is zero mean normal with variance M. 
We then immediately revert to (3).Thus we see then that 
subspace and asynchronous beamformers behave identically! 
The grating lobe aspect of Fresnel lenses is straightforward to 
develop by extending (2)-(3) to the non-uniformly spaced 
case, i.e. with wavenumber mismatch. 

The perfect Fresnel lens is rarely contemplated since 
it is difficult to design. Interestingly optics is a very old 
science, with much lens crafting based on heuristics. One 
dares to imagine that optics would be viewed differently 
(conceptually if not physically) if only it had waited until 
recently to be developed. 

 
4 CONCLUSIONS AND IMPLICATIONS  

 
We have discussed Fresnel lenses and subspace 

beamformers, and their common theoretical linkages. One of 
the more intriguing observations is that a common Fresnel 
lens, such as one finds on an overhead projector, is an 
incoherent subspace beamformer. The incoherence arises from 
two sources, the white noise fractional bandwidth which 
disallows the phase approximation to true time delay, and the 
design tolerance of etching glass. The former is very familiar 
to radar engineers. Since customers are willing to pay much 
for radars the design tolerance is much tighter so the etching 
constraints have less cache! Further the higher wavelengths in 
radar make for much less demanding manufacturing. 

Another observation of viewing lenses and antennas 
in a common framework is that we see that Fresnel lenses, by 
virtue of the modulus truncation, will suffer grating lobes off 
axis. This is inherent in the Fresnel design, unlike other 
manufacturing limitations discussed above. This may help to 
explain why Fresnel lenses have tended not to be advanced for 
remote imaging applications [5]. 

The convergence of optical lens and RF beamformers 
will only increase. This is due to two technical evolutions, 
some might say revolutions.  

First, high frequency radars are emerging that have 
substantial electrical apertures. As an example the Green 
Banks telescope (though passive) has, at W band, roughly 
30,000 wavelengths across the aperture. A near IR system, 
operating at 1 micron, with a 10cm lens, would have 100,000 
wavelengths. Thus wideband and near field effects will 
become more prominent in radar. This will lead to 
opportunities to scavenge design concepts from optics for 
radar use.  

Second, the optics world is changing with the rapid 
pace of nanotechnology. This technology is increasingly 
allowing very precise machining. As such the option will be 
quickly availing itself of allowing for coherent Fresnel optical 
systems. Since radars tend to be coherent, This will lead to 
opportunities to scavenge design concepts from optics for 
radar use. 
Convergence of optical and RF beam forming increases 
competition associated with a merging of disparate fields. 
Having a larger talent pool upon which to draw for insights is 
salutary, whether in capitalism or science. 
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Figure 1   (a)  a prism            (b) beamformer 
The light on the left hand side of the prism has to travel longer 
than the light on the right. This “swings” the light to the left. 
On the beam-former shift registers replace lattices.   
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Antenna pattern for a near field true time delay 
beamformer. The antenna is W band, 1 foot in diameter. In all 
cases the plot (vertical in dB power) is the respond to a far 
field source from a bearing, ranging in this zoomed image 
across 5% of physical space. 

 
Figure 3.  A desired phase profile vs. optimal constant phase 
segment approximation. In most Fresnel lenses the individual 
lens segments are  uncurved, resulting in a linear  phase. Phase 
tilting is viable approximation to the true desired quadratic 
curvature. 
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Figure 4 (previous column).  The resulting focused spots for 
the phase profiles shown in Fig. 3. The roughly 50% 
degradation is well on the way to the incoherent, random, 
phase combining across beamlets, as per eq. (3).. 
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Figure 5.  The sinc amplitude pattern of a one-dimensional 
square aperture with uniform phase. (far field beamformer). 
Note the phase reversal from lobe to lobe. 
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Figure 6.  The amplitude pattern of a one-dimensional square 
aperture with 4 waves of curvature across the aperture. The 
bimodality explains the “ghosting” one sees from blurry 
imagery and near-field clutter. Note also the nuanced phase 
alterations. This non-uniform phase fluctuation is what 
disallows a simple tilt sub-arraying to be lossless, as well as 
disallowing a Fresnel lens to be focused at variant ranges. 
From that point of view an asynchronous design enjoys a 
certain robustness. 
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